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Background.  Computerized decision support systems are becoming increasingly prevalent with advances in data collection and 
machine learning (ML) algorithms. However, they are scarcely used for empiric antibiotic therapy. Here, we predict the antibiotic 
resistance profiles of bacterial infections of hospitalized patients using ML algorithms applied to patients’ electronic medical records 
(EMRs).

Methods.  The data included antibiotic resistance results of bacterial cultures from hospitalized patients, alongside their EMRs. 
Five antibiotics were examined: ceftazidime (n = 2942), gentamicin (n = 4360), imipenem (n = 2235), ofloxacin (n = 3117), and 
sulfamethoxazole-trimethoprim (n = 3544). We applied lasso logistic regression, neural networks, gradient boosted trees, and an 
ensemble that combined all 3 algorithms, to predict antibiotic resistance. Variable influence was gauged by permutation tests and 
Shapely Additive Explanations analysis.

Results.  The ensemble outperformed the separate models and produced accurate predictions on test set data. When no know-
ledge regarding the infecting bacterial species was assumed, the ensemble yielded area under the receiver-operating characteristic 
(auROC) scores of 0.73–0.79 for different antibiotics. Including information regarding the bacterial species improved the auROCs 
to 0.8–0.88. Variables’ effects on predictions were assessed and found to be consistent with previously identified risk factors for an-
tibiotic resistance.

Conclusions.  We demonstrate the potential of ML to predict antibiotic resistance of bacterial infections of hospitalized patients. 
Moreover, we show that rapidly gained information regarding the infecting bacterial species can improve predictions substantially. 
Clinicians should consider the implementation of such systems to aid correct empiric therapy and to potentially reduce antibiotic 
misuse.
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Antibiotic resistance is a major threat to public health. 
Substantial increases in antibiotic resistance rates have raised 
concerns and bleak estimates as to the future of effective anti-
biotic treatment [1]. The emergence of antibiotic resistance is 
mainly shaped by the evolutionary forces of genetic variation 
(ie, mutations and horizontal gene transfer) and selection ex-
erted by antibiotic usage. Correspondingly, antibiotic consump-
tion has been repeatedly correlated with increases in antibiotic 
resistance rates [2]. However, decreases in antibiotic consump-
tion can revert bacterial populations to antibiotic susceptibility, 
likely due to the fitness cost that antibiotic resistance incurs [3]. 
Hence, a straightforward intervention to reduce the burden of 

antibiotic resistance is to decrease antibiotic consumption, for 
example, by reducing inappropriate antibiotic use during em-
piric therapy [4].

Empiric antibiotic therapy is the commencement of antibi-
otic therapy before a patient’s precise etiology, source of infec-
tion, or antibiotic resistance profile of the infecting pathogen 
are confirmed [5]. Empiric therapy is both crucial, as imme-
diate action might be necessary, and, by definition, based on 
educated guesses, as it is mostly derived from partial data avail-
able to doctors. Two main types of errors occur during empiric 
therapy: the prescription of inefficient antibiotics (ie, the anti-
biotics prescribed do not clear the bacterial pathogen due to 
its resistance to them) and the prescription of antibiotics with 
coverage that is too broad (ie, antibiotics with lower coverage 
would suffice to treat the infection).

The first type of error has more immediate and obvious con-
sequences. Treatment with inefficient antibiotics will allow 
resistant bacteria to keep infecting patients, putting them at 
risk [6–8], and to keep spreading, causing even greater harm 
in the future [9]. The second type of error is perhaps not as 
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immediately pronounced but could be detrimental to public 
health in the long run. High-frequency usage of broad-spec-
trum antibiotics is likely to increase the frequency of resistance 
to such antibiotics in the population [10–13], rendering these 
antibiotics less efficient. In turn, this can increase the rate of 
incorrect empiric therapy of the first kind [14, 15] and lead to 
increased broad-spectrum antibiotic usage, forming a posi-
tive feedback loop of frequent broad-spectrum antibiotic pre-
scription and increased resistance [16, 17]. Moreover, patients 
treated with broad-spectrum antibiotics can have a substan-
tial part of their microbiome eliminated, enabling subsequent 
colonization by dangerous and persistent pathogens such as 
Clostridioides difficile [18, 19].

A major possible improvement of empiric therapy can stem 
from use of large medical datasets in conjunction with machine 
learning (ML) algorithms. This approach has been gaining 
traction lately and is recognized as likely being a part of future 
treatment in many medical fields [20]. Various studies have 
identified risk factors for antibiotic-resistant infections based 
on patient comorbidities, demographics, previous treatments, 
and other patient characteristics [21]. However, identification 
of risk factors is not necessarily equivalent to highly accurate 
prediction. Indeed, substantially fewer works have produced 
models that try to predict antibiotic resistance of infecting bac-
teria based on patient data. Despite the high quality of many 
of these studies, they often lacked large datasets [22–24], were 
limited to specific types of infection [24–27], pertained to only a 
few bacterial species [23], or pertained to only outpatients [25].

Here, we used electronic medical records (EMRs) of patients 
hospitalized in Rabin Medical Center, Israel, to predict the an-
tibiotic resistance of bacterial infections. The dataset contained 
more than 16 000 antibiotic-resistance tests of bacterial cultures 
of hospitalized patients with various types of infections, bacte-
rial species, and examined antibiotics. We applied 3 ML models 
and an ensemble that combined their results to predict antibi-
otic resistance of the following 5 antibiotics commonly tested 
for resistance: ceftazidime, gentamicin, imipenem, ofloxacin, 
and sulfamethoxazole-trimethoprim (sul-trim). We show that 
accurate antibiotic-resistance prediction is possible by using 
EMRs and that a substantial increase in prediction accuracy oc-
curs if information regarding the infecting bacterial species is 
available. Finally, we compare the different variables that have 
the greatest influence on antibiotic-resistance prediction and 
explore their effects on resistance probability using 2 forms of 
variable influence analysis of the ML models.

METHODS

Model Development and Evaluation

The earliest 85% of samples of each dataset were used to train 
the models while the remaining 15% were used to test them. 
We developed an ensemble composed of 3 submodels: L1 

regularized logistic regression, gradient-boosted decision trees, 
and a neural network. Each submodel was trained separately 
and provided a number in the range of 0 to 1 as its prediction. 
The ensemble’s prediction was based on the average predictions 
of the submodels. After performing hyperparameter tuning and 
variable selection on the training set (using cross-validation; 
see details in the Supplementary Materials), the chosen models 
were applied to the test set. The ensemble’s predictions were 
compared to the actual resistance class of each data point to de-
rive the area under the receiver-operating-characteristic curve 
(auROC) score.

To compute the balanced accuracy score, we first determined 
a prediction threshold ρ ∈ (0, 1) under which each prediction 
was assigned to 1 (resistant) if above ρ  and to 0 (susceptible) if 
below ρ . We applied the selected models to the training set and 
searched for ρ  values that maximized the balanced accuracy 
scores on the training set. We then applied the models to the 
test set and dichotomized each prediction to 0 or 1 based on the 
obtained ρ  values. Finally, we compared the ensemble’s binary 
predictions to the actual class of each data point and derived the 
balanced accuracy score.

Variable Importance and Shapley Additive Explanations Influence Analysis

We performed permutation tests in order to measure variable 
importance. Each variable’s values were randomly permuted in 
the test set, while other variables were kept as they were. After a 
permutation was performed, the auROC of the ensemble’s pre-
diction on the test set was recalculated. The difference of the 
resulting auROC from that obtained on the original test set was 
recorded. This was repeated 100 times (for each variable), and 
the average result was deemed as each variable’s importance 
score (see Supplementary Materials).

To estimate variable influence, we performed Shapley 
Additive Explanations (SHAP) analysis. We applied the SHAP 
analysis to the training sets, conducting it separately for each 
submodel and then averaging the results to obtain the ensemble’s 
scores (see Supplementary Materials).

Software Used

All analyses were performed using Python 3.6.

RESULTS

We retrieved EMRs of patients who had positive bacterial cul-
ture results from Rabin Medical Center, Israel, for the period 
May 2013 through December 2015. The dataset included the 
bacterial species isolated from the patients and their resistance 
profiles to the antibiotics tested, as well as the patients’ dem-
ographics, comorbidities, hospitalization records, and pre-
vious antibiotic usage within the hospital (see Supplementary 
Materials). We focused on predicting resistance to the 5 anti-
biotics most commonly tested for resistance in our dataset: 
ceftazidime, gentamicin, imipenem, ofloxacin, and sul-trim. 
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Table 1 presents essential summary statistics of the data aggre-
gated across unique samples.

We found varying frequencies of antibiotic resistance be-
tween antibiotics and different bacterial species. The frequen-
cies of antibiotic resistance also fluctuated through time, yet 
average resistance frequencies remained similar in the training 
and test sets (Figure 1).

We used a supervised ML approach to classify each isolated 
bacterial culture as either susceptible or resistant to each anti-
biotic (see the Methods section and Supplementary Materials). 
The final model chosen for predicting antibiotic resistance was 
an ensemble composed of 3 submodels: L1 regularized logistic 
regression, gradient-boosted decision trees, and a neural net-
work. The models were trained on early samples (training set) 
and evaluated on later, distinct samples (test set; Figure 1B). We 
examined the success of the ensemble in predicting antibiotic 

resistance in 2 data conformations: one where the ensemble 
was trained and evaluated separately on each antibiotic and an-
other where the ensemble was trained and evaluated on data 
containing all 5 antibiotics combined. In addition, training and 
testing of the ensemble were performed once on a dataset that 
included the identity of the isolated bacterial species and once 
on the same data, barring the identity of the isolated bacterial 
species.

The ensemble achieved high classification success both in 
terms of auROC and balanced accuracy (ie, the unweighted 
average of the sensitivity and specificity rates; Figures 2 and 3; 
additional metrics in Supplementary Materials, Supplementary 
Figures 1–4). In addition, the ensemble was found to slightly 
outperform the submodels in most scenarios, especially when 
the identity of the isolated bacterial species was included in the 
data (Figure 3).

Table 1.  Summary Statistics of the Dataset

Ceftazidime Gentamicin Imipenem Ofloxacin
Sulfamethoxazole- 

Trimethoprim

Samples, n 2942 4360 2235 3117 3544

Resistance, % 42 32 16 47 50

Age, mean (SD), y 72 (16) 72 (16) 72 (16) 72 (17) 72 (16)

Female, % 42 41 40 43 42

Most common bacterial 
species

Escherichia coli (29%) Escherichia coli (20%) Escherichia coli 
(22%)

Escherichia coli (22%) Escherichia coli (24%)

Second-most common 
bacterial species

Klebsiella  
pneumoniae (18%)

Klebsiella  
pneumoniae (12%)

Pseudomonas 
aeruginosa (18%)

Staphylococcus  
coagulase negative 
group (16%)

Klebsiella 
pneumoniae (15%)

Third-most common  
bacteria species

Pseudomonas 
aeruginosa  
(14%)

Staphylococcus  
coagulase negative 
group (12%)

Klebsiella 
pneumoniae 
(16%)

Klebsiella pneumoniae 
(13%)

Staphylococcus  
coagulase negative 
group (14%)

Latest hospitalization 
duration, mean (SD), 
days

6.1 (10.4) 6.1 (10.2) 7.1 (11.4) 6.1 (10.4) 5.9 (10.1)

Abbreviation: SD, standard deviation.

Figure 1.  Frequency of antibiotic resistance. A, A heat map showing the frequencies of antibiotic resistance for each antibiotic and bacterial species combination. Empty 
cells represent combinations for which there were fewer than 100 data points. B, A time series plot of the frequency of antibiotic resistance observed in each month, for each 
antibiotic, across all bacterial species. Horizontal dashed lines represent the average resistance frequencies of each antibiotic, separately for the training set and the test 
set. Abbreviations: coag. neg., coagulase negative; Jan, January; Sep, September; Sul-Trim, sulfamethoxazole-trimethoprim.
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In contrast to classic statistical methods such as regression 
analysis, the influence of variables on model output is often dif-
ficult to gauge in ML models such as boosted trees and neural 
networks. Thus, we performed 2 types of analysis to determine 
the influence of variables on our ensemble model predictions. 

First, we performed a permutation-based variable importance 
analysis (see Methods section). Briefly, each variable was ran-
domly permuted to break its association with the outcome. 
Then, predictions were made using the new dataset with the 
permuted variable, and the change in the ensemble’s auROC 

Figure 2.  ROC curves of the ensemble are presented separately for each antibiotic and for all antibiotics combined for the datasets excluding (A) and including (B) the 
bacterial species’ identities. The legends show the auROC for each antibiotic, ordered from highest to lowest. The curves represent the ensemble performance on the test 
set, averaged over 10 training–testing sessions (as the training itself contains stochastic elements). Abbreviations: auROC, area under the receiver-operating-characteristic; 
Sul-Trim, sulfamethoxazole-trimethoprim. 

Figure 3.  The auROC and balanced accuracy scores of the ensemble and its submodels. The auROC (A, B) and the balanced accuracy (C, D) of the ensemble and its 3 
submodels, based on data that exclude the identity of the bacterial species (A, C) and on data that include the identity of the bacterial species (B, D). The legends show the 
score of each model, averaged over the 5 antibiotics and ordered from highest to lowest. The results represent the ensemble performance on the test set, averaged over 
10 training–testing sessions (as the training itself contains stochastic elements). Abbreviations: auROC, area under the receiver-operating-characteristic; dnn, dense neural 
networks; Sul-Trim, sulfamethoxazole-trimethoprim; xgb, extreme gradient boosting.
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was recorded. Variables for which permutations resulted in 
substantial decreases in auROC were deemed important. This 
analysis revealed that the two variables with the highest average 
effect (across all five antibiotics) were (1) the proportion of past 
antibiotic-resistance infections, that is, previous same-bacterial 
species resistance to the same antibiotic (previous resistance–
specific) and to any antibiotic (previous resistance–general) 
when including information of the bacterial species and (2) the 
previous any-bacterial species resistance to the same antibiotic 
(previous any-bacteria resistance–specific) and to any antibiotic 
(previous any-bacteria resistancegeneral) when excluding in-
formation about the infecting bacterial species (Supplementary 
Materials, Supplementary Tables 1 and 2).

Furthermore, we performed a SHAP analysis [28] (see 
Methods section). The SHAP analysis allowed us to estimate the 
marginal contribution of each variable to the final prediction 
of the ensemble. We performed the SHAP analysis separately 
for each of the 5 antibiotics tested, both with and without in-
formation regarding the infecting bacterial species. We present 
the variables that had a substantial contribution to prediction of 
antibiotic resistance (as defined in the Methods section) for all 5 
antibiotics in Figure 4. When information regarding the bacte-
rial species was excluded, the 2 top contributing variables were 
consistent with the permutation-based importance analysis: 
previous any-bacteria resistance–specific and general. These 
were followed by variables that indicated whether the infection 
was nosocomial or community-acquired and whether the pa-
tient was previously treated in the hospital with antibiotics of 
the same family (antibiotics were categorized into beta-lactams, 
fluoroquinolones, aminoglycosides, and sulfonamides). Other 
important variables were the patients’ functioning and indepen-
dence levels and previous hospitalization duration. Similarly, 
when data regarding the bacterial species were included, the av-
erage previous resistance of the same bacteria to the same/any 
antibiotic (previous resistance–specific/general, respectively) 
remained among the top most affecting variables, alongside in-
dicator variables of the infecting bacterial species.

The SHAP analysis also allowed us to determine whether the 
different variables in our model act to decrease or increase the 
probability of antibiotic resistance (Figure 4B, 4D). Reassuringly, 
the probability of resistance in our model increased in accord-
ance with known risk factors of antibiotic resistance: previous 
antibiotic resistant infections, previous hospitalizations, noso-
comial infections, previous antibiotic usage, location of sample 
derivation, and contraindications of patient independence (eg, 
nursing home residence and dependence in feeding) [23, 25, 
27, 29, 30]. When information on the infecting bacterial species 
was included, additional patterns emerged. For example, while 
the presence of Acinetobacter baumannii in cultures increases 
the probability of resistance, Staphylococcus aureus decreases it. 
The patients’ sex was found to have only a minor effect on the 
resistance probability, with increased probability of resistance 

for males. The sample date, which was coded as a numeric vari-
able from the date of the earliest culture in the dataset, was also 
found to have some effect, probably due to the fluctuating re-
sistance frequencies through time captured by our model.

DISCUSSION

ML is widely applied in various fields of medicine and is likely 
to become an invaluable part of medical decision-making and 
treatment [20]. However, ML is rarely used in aiding the de-
cision of empiric antibiotic therapy. Only a handful of studies 
have previously used the prediction abilities of ML models for 
the rapid detection of antibiotic resistance from patient EMRs.

Our work demonstrates the ability to predict antibiotic re-
sistance from patient EMRs, even with relatively incomplete pa-
tient data, with accuracy and extends previous research in the 
field in several ways. Rather than relying on a single algorithm, 
we used an ensemble that combines several algorithms that 
differ substantially in their underlying prediction methods (lo-
gistic regression, boosted decision trees, and neural networks) 
to produce robust results, avoiding pitfalls of each single algo-
rithm. Importantly, we performed a controlled procedure of 
hyper parameter selection on a training subset of the data and 
then continued to test our predictions on a disjoint, previously 
unexplored subset of the data. Furthermore, we predicted anti-
biotic resistance on a large and heterogeneous dataset that com-
prised more than 16 000 antibiotic-resistance tests of bacterial 
cultures of hospitalized patients, tested for various antibiotics, 
and containing multiple bacterial species and infection sites.

Despite the heterogeneity of our data, we were able to train 
models that achieved highly competitive results. If informa-
tion regarding the infected bacterial species was excluded, we 
obtained auROC scores in the range of 0.73–0.79, while inclu-
sion of the bacterial species yielded even higher auROC scores in 
the range of 0.8 to 0.88. Previous studies that included informa-
tion regarding the infecting bacterial species obtained auROC 
scores in the range of 0.6 to 0.83 for antibiotics comparable to 
those examined in our dataset [27, 31]. Other studies, restricted 
to 1 bacterial species or to only 1 type of infection, had auROC 
scores in the range of 0.7 to 0.83 [23–25]. Even when previous 
auROC results were comparable to those achieved in our study, 
previous studies did not have such a heterogenic dataset that 
included patients with different infections, bacterial species, 
and antibiotics. This added a substantial challenge, which was 
successfully tackled by our models and is likely to decrease the 
predictive power of methods used in other studies.

The methods we applied should be generalizable to other 
healthcare facilities. The dataset we used included patient vari-
ables commonly recorded in EMRs, yet other researchers may 
have additional information available (eg, blood panel results). 
Such information can conceivably improve predictions even 
further and should be examined as additional predictors to the 
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model, where accessible. Moreover, larger sample sizes, which 
may be available in other healthcare facilities due to larger ca-
pacity or better data accessibility and digitization options, are 
also likely to improve model predictions. As patient variables 
included in EMRs may vary between different healthcare facil-
ities and due to the dynamic and local nature of bacterial infec-
tions, any such model should be retrained in new settings [32]. 
It should also be periodically retrained, as resistance patterns 

can change over time, reflecting larger-scale antibiotic con-
sumption levels [2].

Our dataset did not enable a direct comparison of our re-
sults to doctors’ predictions of resistance. Moreover, it is not 
straightforward to perform such a comparison as the observ-
able result of antibiotic prescription is affected by various fac-
tors (eg, hospital policy, patient allergies) and hence does not 
directly reflect the doctors’ predictions. Interestingly, in a recent 

Figure 4.  Variable importance analysis using Shapley Additive Explanations (SHAP). A and C, The absolute marginal contribution to predicted probabilities, normalized by 
the predicted population resistance prevalence (x-axis), is plotted for each antibiotic (color-coded), both for data that exclude information on the bacterial species (A) and 
data that include information on the bacterial species (C). The presented variables are those with an effect of at least 0.05 in any of the 5 antibiotics. B and D, The marginal 
changes in predicted resistance probability derived from the same variables shown in panels A and C, respectively, are plotted for all antibiotics combined, both for data that 
exclude information on the infected bacterial species (B) and data that include information on the infected bacterial species (D). Each row in panels B and D shows the distri-
bution of the data in 2 dimensions, and each dot represents 1 sample. The color represents the value of the variable in a schematic scale from low value to high value (binary 
variables are represented by the 2 colors on the edges of the color bar); the position on the x-axis represents the marginal change in probability of antibiotic resistance due 
to the variables’ values. The results represent the ensemble performance on the training set, averaged over 25 training sessions (as the training and SHAP analysis contain 
stochastic elements). Abbreviations: coag. neg., coagulase negative; Sul-Trim, sulfamethoxazole-trimethoprim.
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study, it was found that an ML approach based on prediction 
of resistance superseded doctors in reducing superfluous anti-
biotic prescription [33]. Although we lacked data to perform 
such a comparison, our models achieved higher performance 
scores than the aforementioned model and therefore have the 
potential to further improve reduction of superfluous usage if 
similarly applied. Moreover, even if our models underperform 
doctors’ average predictive ability, they can still aid in situations 
where doctors have low confidence in their ability to predict 
the resistance, as is commonly used in other medical fields [34].

Despite the complex nature of the models used, further compli-
cated by their combination into an ensemble model, we were able 
to provide interpretation of the influence of different variables on 
the ensemble’s predictions. Reassuringly, most of the variables that 
were found to be influential in our analysis have been previously 
identified as increasing the risk of infections by antimicrobial-
resistant pathogens. In addition to further validating our model 
against prior knowledge, understating which variables are influ-
ential can help indicate important drivers of antibiotic resistance. 
For example, the variables that were consistently highly ranked as 
important in our models were those that pertained to previously 
resistant bacterial cultures. The importance of those variables 
might imply the persistence of resistant bacteria in patients and 
may warrant further investigations into treatments that restore 
the normal microbiota after antibiotic treatments, especially in pa-
tients at risk for rehospitalization [35]. However, we are extremely 
wary in any causal interpretation of our results. The models we de-
ployed are suited for optimizing prediction rather than estimating 
causal effects. Further research on causality in antibiotic resistance 
dynamics is of paramount importance. Although our group has 
made initial steps in pursuing this [36], application of ML algo-
rithms that estimate such causal effects (eg, using [37]) is still 
rather rare.

An especially important variable in our models was the iden-
tity of the bacterial species causing the infection. It is plausible 
that biological differences and different exposures to antibiotics 
produce the observed differences between resistance frequencies 
of different bacterial species (Figure 1). Hence, this information 
is predictive in our models. Although not routinely performed 
in most hospitals, rapid identification of the infecting bacterial 
species is possible, for example, through polymerase chain re-
action–based methods [38]. If our model is to be implemented 
in real-time clinical settings, adding such rapid bacterial species 
identification tools might be cost beneficial, given the improve-
ment in our prediction results and the major cost incurred by 
antibiotic-resistant infections [39].

Additional potentially important predictors for resistance 
are various community-derived risk factors, such as antibi-
otic use outside the hospital [25, 40, 41], residency location 
[12], microbiome composition, diet, and exercise [42–45]. 
Unfortunately, these were not available to us, but future work 
should consider their inclusion when available.

To conclude, our results present an ensemble-based ML ap-
proach to predict antibiotic resistance of bacterial infections of 
hospitalized patients using the patients’ EMRs. Our method 
autonomously identified known risk factors of antibiotic re-
sistance and provided robust predictions based on the com-
plex interactions between them and other patient information. 
Importantly, our approach can serve as a template for other 
healthcare facilities. It should encourage efficient collection and 
accessibility to EMRs and can be a stepping-stone for achieving 
highly informed, personalized empiric antibiotic therapy. Such 
therapy should result in less antibiotic misuse and hopefully aid 
in the fight against antibiotic resistance.
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